3.502 \(\int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=103 \[ -\frac {2 a (B+i A) \cot ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 a (A-i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 \sqrt [4]{-1} a (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a A \cot ^{\frac {5}{2}}(c+d x)}{5 d} \]

[Out]

2*(-1)^(1/4)*a*(A-I*B)*arctanh((-1)^(3/4)*cot(d*x+c)^(1/2))/d-2/3*a*(I*A+B)*cot(d*x+c)^(3/2)/d-2/5*a*A*cot(d*x
+c)^(5/2)/d+2*a*(A-I*B)*cot(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {3581, 3592, 3528, 3533, 208} \[ -\frac {2 a (B+i A) \cot ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 a (A-i B) \sqrt {\cot (c+d x)}}{d}+\frac {2 \sqrt [4]{-1} a (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a A \cot ^{\frac {5}{2}}(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(7/2)*(a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

(2*(-1)^(1/4)*a*(A - I*B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d + (2*a*(A - I*B)*Sqrt[Cot[c + d*x]])/d - (
2*a*(I*A + B)*Cot[c + d*x]^(3/2))/(3*d) - (2*a*A*Cot[c + d*x]^(5/2))/(5*d)

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx &=\int \cot ^{\frac {3}{2}}(c+d x) (i a+a \cot (c+d x)) (B+A \cot (c+d x)) \, dx\\ &=-\frac {2 a A \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\int \cot ^{\frac {3}{2}}(c+d x) (-a (A-i B)+a (i A+B) \cot (c+d x)) \, dx\\ &=-\frac {2 a (i A+B) \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a A \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\int \sqrt {\cot (c+d x)} (-a (i A+B)-a (A-i B) \cot (c+d x)) \, dx\\ &=\frac {2 a (A-i B) \sqrt {\cot (c+d x)}}{d}-\frac {2 a (i A+B) \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a A \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\int \frac {a (A-i B)-a (i A+B) \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx\\ &=\frac {2 a (A-i B) \sqrt {\cot (c+d x)}}{d}-\frac {2 a (i A+B) \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a A \cot ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {\left (2 a^2 (A-i B)^2\right ) \operatorname {Subst}\left (\int \frac {1}{-a (A-i B)-a (i A+B) x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}\\ &=\frac {2 \sqrt [4]{-1} a (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}+\frac {2 a (A-i B) \sqrt {\cot (c+d x)}}{d}-\frac {2 a (i A+B) \cot ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 a A \cot ^{\frac {5}{2}}(c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 3.26, size = 263, normalized size = 2.55 \[ \frac {a \sin ^2(c+d x) (\cot (c+d x)+i) (\cos (d x)-i \sin (d x)) (A \cot (c+d x)+B) \left (-\frac {2 i e^{-i c} (A-i B) \tanh ^{-1}\left (\sqrt {\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )}{\sqrt {\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {\frac {i \left (1+e^{2 i (c+d x)}\right )}{-1+e^{2 i (c+d x)}}}}-\frac {1}{15} (\cos (c)-i \sin (c)) \sqrt {\cot (c+d x)} \csc ^2(c+d x) (5 (B+i A) \sin (2 (c+d x))+3 (6 A-5 i B) \cos (2 (c+d x))-12 A+15 i B)\right )}{d (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(7/2)*(a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

(a*(I + Cot[c + d*x])*(B + A*Cot[c + d*x])*(Cos[d*x] - I*Sin[d*x])*Sin[c + d*x]^2*(((-2*I)*(A - I*B)*ArcTanh[S
qrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])/(E^(I*c)*Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((
2*I)*(c + d*x)))]*Sqrt[(I*(1 + E^((2*I)*(c + d*x))))/(-1 + E^((2*I)*(c + d*x)))]) - (Sqrt[Cot[c + d*x]]*Csc[c
+ d*x]^2*(Cos[c] - I*Sin[c])*(-12*A + (15*I)*B + 3*(6*A - (5*I)*B)*Cos[2*(c + d*x)] + 5*(I*A + B)*Sin[2*(c + d
*x)]))/15))/(d*(A*Cos[c + d*x] + B*Sin[c + d*x]))

________________________________________________________________________________________

fricas [B]  time = 0.54, size = 432, normalized size = 4.19 \[ -\frac {15 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (-\frac {{\left (2 \, {\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} - {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {\frac {{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - 15 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (-\frac {{\left (2 \, {\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} - {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {\frac {{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - 8 \, {\left ({\left (23 \, A - 20 i \, B\right )} a e^{\left (4 i \, d x + 4 i \, c\right )} - 6 \, {\left (4 \, A - 5 i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (13 \, A - 10 i \, B\right )} a\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{60 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/60*(15*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*A^2 + 8*A*B - 4*I*B^2)*a^2/d^2)*log(
-(2*(A - I*B)*a*e^(2*I*d*x + 2*I*c) - (I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt((4*I*A^2 + 8*A*B - 4*I*B^2)*a^2/d^2
)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)*a)) - 15*(d*e^(
4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*A^2 + 8*A*B - 4*I*B^2)*a^2/d^2)*log(-(2*(A - I*B)*a*
e^(2*I*d*x + 2*I*c) - (-I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt((4*I*A^2 + 8*A*B - 4*I*B^2)*a^2/d^2)*sqrt((I*e^(2*
I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)*a)) - 8*((23*A - 20*I*B)*a*e^(
4*I*d*x + 4*I*c) - 6*(4*A - 5*I*B)*a*e^(2*I*d*x + 2*I*c) + (13*A - 10*I*B)*a)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)
/(e^(2*I*d*x + 2*I*c) - 1)))/(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )} \cot \left (d x + c\right )^{\frac {7}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)*cot(d*x + c)^(7/2), x)

________________________________________________________________________________________

maple [C]  time = 1.80, size = 2945, normalized size = 28.59 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

-1/15*a/d*(15*I*A*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x
+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))
^(1/2)+18*A*2^(1/2)*cos(d*x+c)^3-15*A*2^(1/2)*cos(d*x+c)+15*A*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+
c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/si
n(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+15*B*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1
/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+
c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-15*B*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+
c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin
(d*x+c))^(1/2),1/2*2^(1/2))+5*I*A*2^(1/2)*cos(d*x+c)^2*sin(d*x+c)+5*B*2^(1/2)*cos(d*x+c)^2*sin(d*x+c)-15*I*B*2
^(1/2)*cos(d*x+c)^3+15*I*B*2^(1/2)*cos(d*x+c)+15*I*A*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d
*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/
sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)^2+15*I*B*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1
/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(
1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2+15*I*A*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c)
)^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(
d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)-15*I*A*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1
/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(-sin(d*x+c)-
1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)-15*I*B*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x
+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/s
in(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)-15*I*A*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/
sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*
x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3+15*I*A*(-(-sin(d*x+c)-1+cos(d*x+c))/si
n(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(
-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)^3+15*I*B*EllipticPi((-(-sin(d*x+c)-1+cos(d
*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)
+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3-15*I*A*EllipticPi((-(-sin(d*x+c
)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+c
os(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2-15*I*A*(-(-sin(d*x+c)-
1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/
2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-15*I*B*EllipticPi((-(-sin(d*x+c)-1+co
s(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x
+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-15*A*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+
c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+si
n(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3-15*B*EllipticPi((-(-sin(d*x+c)-1+c
os(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*
x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3+15*B*(-(-sin(d*x+c)-1+cos(d
*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*Elli
pticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)^3-15*A*EllipticPi((-(-sin(d*x+c)-
1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos
(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2-15*B*EllipticPi((-(-sin(
d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*(
(-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^2+15*B*(-(-sin(d*x+
c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^
(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)^2+15*A*EllipticPi((-(-s
in(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2
)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)+15*B*EllipticPi(
(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))
^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)-15*B*(-(-si
n(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*
x+c))^(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c))*(cos(d*x+c)/sin(
d*x+c))^(7/2)*sin(d*x+c)/cos(d*x+c)^4*2^(1/2)

________________________________________________________________________________________

maxima [B]  time = 1.09, size = 190, normalized size = 1.84 \[ \frac {15 \, {\left (2 \, \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )\right )} a + \frac {120 \, {\left (A - i \, B\right )} a}{\sqrt {\tan \left (d x + c\right )}} - \frac {8 \, {\left (5 i \, A + 5 \, B\right )} a}{\tan \left (d x + c\right )^{\frac {3}{2}}} - \frac {24 \, A a}{\tan \left (d x + c\right )^{\frac {5}{2}}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/60*(15*(2*sqrt(2)*((I - 1)*A + (I + 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(
(I - 1)*A + (I + 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) + sqrt(2)*(-(I + 1)*A + (I - 1)*B
)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - sqrt(2)*(-(I + 1)*A + (I - 1)*B)*log(-sqrt(2)/sqrt(ta
n(d*x + c)) + 1/tan(d*x + c) + 1))*a + 120*(A - I*B)*a/sqrt(tan(d*x + c)) - 8*(5*I*A + 5*B)*a/tan(d*x + c)^(3/
2) - 24*A*a/tan(d*x + c)^(5/2))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {cot}\left (c+d\,x\right )}^{7/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(7/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i),x)

[Out]

int(cot(c + d*x)^(7/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(7/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________